
Visual Scripting for UI Toolkit

Table of contents
Requirements & Setup...3

Requirements..3
Manual Setup..3

First steps (Please read this before you start)..5
Query Nodes...8

UI Document Query One..8
Visual Element Query One..10
UI Document Query Many...11
Visual Element Query Many..13

Event Nodes.. 14
On Button Click.. 14
On Dropdown Changed..15
On Submit..16
On Cancel.. 17
On Pointer Down... 18
On Pointer Up...19
On Pointer Enter..20

On Pointer Leave..21
On Pointer Move...22
On Slider Value Changed..23
On Slider Int Value Changed..24
On Slider MinMax Value Changed..25
On Scroller Value Changed...26
On Text Field Value Changed...27
On Text Field End Edit..28
On Toggle Value Changed..29

Helper Nodes...30
Get UI Document..30
Wait For UI Document Layout..30
Wait For UI Element Layout...31
Event Target..32
Get Pointer Event Pos...33
Get Local Pointer Event Pos..34
Get Pointer Keys...35
Get Pointer Delta...36
Get Pointer Clicks...37
Pointer Event Wrapper...38

Helper Extensions (Visual Element Extension)...39
Frequently Asked Questions...41

What about Drag and Drop Events..41
There is no „UI Toolkit“ category in the Fuzzy Finder...41
I need to access properties that are not covered by the extensions...42
How to use the „Cleared“ cache trigger output?..43

Requirements & Setup

Requirements
Unity 2021.2 or higher is required since that is when Unity added the UI Toolkit Module for
runtime use. If you can, please upgrade to the highest LTS version of Unity. The newer the
version the less „glitches“ the UI Toolkit has.

Keep in mind, UI Toolkit as a whole is still a work in progress and not quite ready for prime time.
Unity itself still recommends using UGUI instead of UI Toolkit for runtime applications (source).

Visual Scripting 1.7.2 or higher is required.

Manual Setup
Usually the automatic setup adds the Kamgam.UIToolkitVisualScripting assembly to your Node
Library and rebuilds the nodes. In case this fails then here is the manual way to do it.

1) Open your project settings via Edit > Project Settings > Visual Scripting > Node Library
(click the arrow left to „Node Library“).

2) Scroll way down in the Node Library and click the [+] button on the right.

https://docs.unity3d.com/Manual/UI-system-compare.html

3) Select Kamgam.UIToolkitVisualScripting from the list.

4) Hit the „Regenerate Nodes“ button (this will take a while).

5) That’s it, you are done. If the fuzzy finder now shows a „UI Toolkit“ section then it worked.

First steps (Please read this before you start)
There are three ways to add UI Toolkit nodes to your graph (A, B, C).

A) Right-Click > UI Toolkit > ...

In this menu you will find the basic nodes needed for accessing the UI Hierarchy.

The nodes that you will probably use the most are the query nodes. These are the entry points
for fetching ui elements from the UI Toolkit visual hierarchy. They are used to query the
document for elements.

The „Results“ of the query nodes are VisualElements which you can then add events to (see B)
or change via extension nodes (see C).

https://docs.unity3d.com/Manual/UIE-UQuery.html
https://docs.unity3d.com/Manual/UIE-UQuery.html

B) Right-Click > Events > UI Toolkit

Use these event nodes to register events to the VisualElements returned by the query nodes.

C) Right-Click > Codebase > Kamgam > UI Toolkit Visual Scripting > …

The extension nodes provide you with a lot of shortcuts to access and modify VisualElements.

In the example below we set the width of a Button to 100 px at the start.

Query Nodes
The process of getting hold of a visual element in UI Toolkit is a bit different than the usual Unity
way. To fetch an element from the visual hierarchy you need to query the document for it. Here
is a list of query nodes that will help you with this.

UI Document Query One
Queries one element from a UI Document. The result is a single visual element.

Inputs:

Clear Cache Trigger: (optional) Use to clear the cache and re-run the query.

Document: Takes a UI Document as input. This is the document on which the query will be
executed. You can leave this empty.

If it is left empty then it will try to search for a UIDocument in this order (the first found will be
used):

1. It looks for a UIDocument on „this“ game object (this = the game object which the
graph was added to)

2. It looks for a variable named „document“ on „this“ game object

3. It looks for a scene variable named „document“.

The variable name that is used for searching can be configured in the inspector via
„Document Var Name“.

https://docs.unity3d.com/Manual/UIE-UQuery.html

Name: The element name to use for the query. Leave empty if you do not care about the
name. More infos on queries can be found in the Unity Manual.

Class: The class name to use for the query. Leave empty if you do not care about the class
name. More infos on queries can be found in the Unity Manual.

Type: The element type to use for the query. Leave empty if you do not care about the type.
More infos on queries can be found in the Unity Manual.

Cache Results (Inspector): If the query is used very often (in an update loop for example)
then it would be a waste of resources to repeatedly query the UI. Instead we can cache the
result of the last query and use that. Uncheck this option if you want to submit a new query
every time.

Document Var Name (Inspector): If no document is specified then the node will try to find
one in the local- or scene variables. To do that it uses this name as the variable name.

Outputs:

Cleared: Called automatically after the „Clear Cache Trigger “ was triggered.

Result: A single visual element (or Null). If multiple elements match the query then the first
one found is used.

Usage:

This example toggles a class „red-text“ on the „menu-button“ button.

https://docs.unity3d.com/Manual/UIE-UQuery.html
https://docs.unity3d.com/Manual/UIE-UQuery.html
https://docs.unity3d.com/Manual/UIE-UQuery.html

Visual Element Query One
It’s basically the same as UI Document Query One only that the starting element is not a UI
Document but another Visual Element.

Please read the „UI Document Query One“ for details on this node.

UI Document Query Many
Query for multiple elements in a UI Document. The result is a list of visual elements.

Inputs:

Clear Cache Trigger: (optional) Use to clear the cache and re-run the query.

Document: Takes a UI Document as input. This is the document on which the query will be
executed. You can leave this empty.

If it is left empty then it will try to search for a UIDocument in this order (the first found will be
used):

4. It looks for a UIDocument on „this“ game object.

5. It looks for a variable named „document“ on „this“ game object

6. It looks for a scene variable named „document“.

The variable name that is used for searching can be configured in the inspector via
„Document Var Name“.

Name: The element name to use for the query. Leave empty if you do not care about the
name. More infos on queries can be found in the Unity Manual.

Class: The class name to use for the query. Leave empty if you do not care about the class
name. More infos on queries can be found in the Unity Manual.

Type: The element type to use for the query. Leave empty if you do not care about the type.
More infos on queries can be found in the Unity Manual.

https://docs.unity3d.com/Manual/UIE-UQuery.html
https://docs.unity3d.com/Manual/UIE-UQuery.html
https://docs.unity3d.com/Manual/UIE-UQuery.html

Cache Results (Inspector): If the query is used very often (in an update loop for example)
then it would be a waste of resources to repeatedly query the UI. Instead we can cache the
result of the last query and use that. Uncheck this option if you want to submit a new query
every time.

Document Var Name (Inspector): If no document is specified then the node will try to find
one in the local- or scene variables. To do that it uses this name as the variable name.

Outputs:

Cleared Trigger: Called automatically after the „Clear Cache Trigger “ was triggered.

Result: A list of visual elements (List<VisualElement>). Use a for each loop the extract them.

Usage:

This one toggles a class „red-text“ on all labels in the document.

Visual Element Query Many
It’s basically the same as UI Document Query Many only that the starting element is not a UI
Document but another Visual Element.

Please read the „UI Document Query Many“ for details on this node.

Event Nodes
Here is a list of all the event nodes for UIToolkit. Whenever possible the nodes try to use the
same name as the normal UGUI event nodes to make the transition easier.

On Button Click
An event that reacts to a button click.

Inputs:

Register Callbacks: (optional, use if the Element has changed to reregister the event
callbacks)

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: the event trigger (usually you will use only this)

Result: a UI Toolkit ClickEvent object (see Unity Manual).

Usage:

Notice how the „Cleared“ output of the query is connected to the „Update Callback“. While this
is not strictly necessary it is a good habit. Because of this the event will automatically re-register
the event listeners on the new query results whenever the cache on the query is cleared.

https://docs.unity3d.com/ScriptReference/UIElements.ClickEvent.html

On Dropdown Changed
An event for dropdown changes.
Notice: The value returned is the STRING of the options, not the index.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The selected option (string)

Previous Value: The previously selected option (string)

Usage:

On Submit
An event that reacts to submit and click events on any element.

Inputs:

Register Callbacks: (optional, use if the Element has changed to reregister the event
callbacks)

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: the event trigger (usually you will use only this)

Result: a SubmitEvent object. Use its targetElement property to find out what visual element
did trigger the event.

Usage:

Notice how the „Cleared“ output of the query is connected to the „Update Callback“. While this
is not strictly necessary it is a good habit. Because of this the event will automatically re-register
the event listeners on the new query results whenever the cache on the query is cleared.

On Cancel
This event is fired if an action is cancelled. For example if a text input field is exited with Esc.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The target (VisualElement) that triggered this event. It is identical with the Element
input.

Usage:

On Pointer Down
Triggered when the pointer is pressed inside the visual element.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Usage:

On Pointer Up
Triggered when the pointer is released inside the visual element.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Usage:

On Pointer Enter
Triggered when the pointer enters the visual element.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Usage:

On Pointer Leave
Triggered when the pointer leaves the visual element.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Usage:

On Pointer Move
Triggered when the pointer is moved inside the visual element.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Usage:

On Slider Value Changed
Events for sliders. Result is a float.
Notice: IntSliders and MinMaxSlider have their own dedicated nodes.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this).

Result: The new float value of the slider.

Previous Value: The old float value of the slider.

Usage:

On Slider Int Value Changed
Events for sliders. Result is an integer.
Notice: Sliders and MinMaxSlider have their own dedicated nodes.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this).

Result: The new int value of the slider.

Previous Value: The old int value of the slider.

Usage:

On Slider MinMax Value Changed
Events for sliders. Result is an Vector2.
Notice: Sliders and IntSliders have their own dedicated nodes.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this).

Result: The new Vector2 value of the slider.

Previous Value: The old Vector2 value of the slider.

Usage:

On Scroller Value Changed
Events for scrollbars (in UI Toolkit they are called scrollers).

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (float).
HINT: ScrollViews consist of two Scrollers. In a ScrollView the values are the pixels the scroller
is scrolling the CONTENT, starting with 0.

Previous Value: The old value (float)

Usage:

On Text Field Value Changed
Events for changes in a text field.
Notice: Check the „isDelayed“ box on the textfield or use the OnTextFieldEditEnd event if you
do not want this to be triggered with every key press.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new text (string)

Previous Value: The old text (string)

Usage:

On Text Field End Edit
Events for when the editing of a text field ended.
Notice: Use the OnTextFieldChanged event if you need an event for every key press.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new text (string)

Previous Value: The old text (string)

Usage:

On Toggle Value Changed
Events for toggles.

Inputs:

Register Callbacks: (optional) Use if the Element has changed to reregister the event
callbacks.

Element: Takes a Visual Element as input (usually from a query)

Outputs:

Registered: Called automatically after the „Register Callbacks“ was triggered.

Output #2 Trigger: The event trigger (usually you will use only this trigger).

Result: The new value (boolen)

Previous Value: The old value (boolean)

Usage:

Helper Nodes
Here are some handy nodes to deal with events and other data types.

Get UI Document
Useful if you need to fetch th UI document from the gameObject or a variable (local/scene).

The „Variable Name“ is the name of the local or scene variable (whichever is found first is used).
For more details on how it works please refer to the „UI Document Query“ nodes. The logic is
the same.

Wait For UI Document Layout

Once a UI Document is loaded it will need some time to do the layouting (usually done within
the first frame after activation). This means that the dimensions may return NaN as value if you
try to read them in the very first frame. This is a Unity limitation. UI Elements are loaded and
layouted via the normal event message queue in Start().

So, if you do this (see below) you will get a NaN response:

NOTICE: This is only relevant if you want to READ these values in the first frame. You can set
them here without any problems.

The solution is to wait for the layouting to be done. The „Wait For UI Document Layout“ does
exactly that.

Here is the example from above with the wait node added:

This looks a bit cumbersome (get the document, feed it into the wait node, then into the query).
An alternative to this is to use a „Wait for Element Layout“ node. It works the same, only that it
takes an element instead of a document as input.

Wait For UI Element Layout
It does the same as the „Wait for UI Document Layout“ node (see above).

Event Target
Useful for extracting the target (visual element) from an event.

Inputs:

Event: The event object

Outputs:

Target: The visual element stored in the EventBase.target property.

Usage:

https://docs.unity3d.com/ScriptReference/UIElements.EventBase-target.html

Get Pointer Event Pos
Useful for extracting the global position of the pointer. Can be used on pointer events.

Inputs:

Event: The event object

Outputs:

Position: The global pointer position.

Usage:

Get Local Pointer Event Pos
Useful for extracting the local position of the pointer within the visual element. Can be used on
pointer events.

Inputs:

Event: The event object

Outputs:

Local Position: The local pointer position.

Usage:

Get Pointer Keys
Useful to check if a key was pressed when the event fired.

Inputs:

Pointer Event: The pointer event object

Outputs:

Shift: Was the [Shift] key pressed (bool)

Control: Was the [Control] key pressed (bool)

Alt: Was the [Alt] key pressed (bool)

Command: Was the [Command] key pressed (bool)

Action: Was the [Action] key pressed (bool)

Usage:

Get Pointer Delta
Gets the delta from the last pointer move.

Inputs:

Pointer Event: The pointer event object

Outputs:

Delta Pos: The position delta

Delta Time: The time delta

Usage:

Get Pointer Clicks
Gets the number of clicks on the element. Useful for implementing double-click buttons.

Inputs:

Pointer Event: The pointer event object

Outputs:

Clicks: The number of clicks counted within a small time window.

Usage:

Pointer Event Wrapper
If the „Get Pointer ..“ nodes are not enough then this will help you to access any data you want.

Inputs:

Pointer Event: A pointer event object

Outputs:

List: If used with „expose“ it will list all public properties of the pointer event.

Usage:

Helper Extensions (Visual Element Extension)
To access the functions of a VisualElement (the basic building block of UI Toolkit) you can either
add the VisualElement class to your Visual Scripting „Type Options“ or you use the included
UIToolkitVisualElementExtensions.

The quickest way to access them is to start dragging on the Result value of a query, like this:

If you then start typing commands like „set width“ the fuzzy finder will show you the available
extension methods.

In the example below we set the width of a Button to 100 px at the start.

Inputs:

Element: The visual element on which to operate.

Width: The value of the operation

Unit: The value unit (pixel, percent, ..)

Delta: If enabled then the value (width) will be added to the current width instead of
replacing it. The „delta“ concept is used in many extensions.

Outputs:

Out Trigger: Simply forwards the input trigger.

Result: Forwards the „Element“ input to the output. Useful for chaining multiple nodes.

The are many more extensions like this.

If you want to explore then go to: Codebase > Kamgam > UI Toolkit Visual Scripting > UI
Toolkit Visual Element Extensions and you will get a list of all the available methods.

Frequently Asked Questions
Here are some common issues that have been reported.

If you can, please upgrade to the highest LTS version of Unity. The newer the version the less
„glitches“ the UI Toolkit has.

Keep in mind, UI Toolkit as a whole it is still a work in progress and not quite ready for prime
time. Unity itself still recommends using UGUI instead of UI Toolkit for runtime applications
(source).

What about Drag and Drop Events
You may wonder why the drag and drop events have no nodes (DragEnterEvent,
DragLeaveEvent, DragExitedEvent, DragPerformEvent, DragUpdatedEvent).

The answer is that these are not supported at runtime.
Source: https://forum.unity.com/threads/dragexitedevent-does-not-exist-in-the-namespace-
unityengine-uielements.1430083/

To implement drag and drop at runtime Unity recommends using pointer capturing. Here is the
page explaining it in the Unity Manual: https://docs.unity3d.com/Manual/UIE-create-drag-and-
drop-ui.html

There is no „UI Toolkit“ category in the Fuzzy Finder
This may happen if the visual scripting has not yet been used in the project before. You will have
to re-run the automatic setup again via Tools > UI Toolkit Visual Scripting > Setup OR you follow
the Manual Setup instructions at the start of this document.

https://docs.unity3d.com/Manual/UIE-create-drag-and-drop-ui.html
https://docs.unity3d.com/Manual/UIE-create-drag-and-drop-ui.html
https://forum.unity.com/threads/dragexitedevent-does-not-exist-in-the-namespace-unityengine-uielements.1430083/
https://forum.unity.com/threads/dragexitedevent-does-not-exist-in-the-namespace-unityengine-uielements.1430083/
https://docs.unity3d.com/Manual/UI-system-compare.html

I need to access properties that are not covered by the extensions.
You can add the VisualElement to the type options. This will allow you to access any property
directly.

Don’T forget to regenerate the nodes once you have added the „Visual Element“ class.

After that you should be able to access the VisualElement in the fuzzy finder.

How to use the „Cleared“ cache trigger output?
In case the UI in the document is changed dynamically it may happen that the old query result
is no longer valid (you may have added a new button and deleted the old one for example).

In these cases you have to call the „Clear Cache Trigger “ to clear the query cache.

If another node (like the Button-Click-Node below) depends on the result of the query then it
also needs to be notified of the changed query result.

That’s what the „Cleared“ trigger does. It lets the Button node know that it has to re-register the
onClick events on the new query result.

	Requirements & Setup
	Requirements
	Manual Setup

	First steps (Please read this before you start)
	Query Nodes
	UI Document Query One
	Visual Element Query One
	UI Document Query Many
	Visual Element Query Many

	Event Nodes
	On Button Click
	On Dropdown Changed
	On Submit
	On Cancel
	On Pointer Down
	On Pointer Up
	On Pointer Enter
	On Pointer Leave
	On Pointer Move
	On Slider Value Changed
	On Slider Int Value Changed
	On Slider MinMax Value Changed
	On Scroller Value Changed
	On Text Field Value Changed
	On Text Field End Edit
	On Toggle Value Changed

	Helper Nodes
	Get UI Document
	Wait For UI Document Layout
	Wait For UI Element Layout
	Event Target
	Get Pointer Event Pos
	Get Local Pointer Event Pos
	Get Pointer Keys
	Get Pointer Delta
	Get Pointer Clicks
	Pointer Event Wrapper

	Helper Extensions (Visual Element Extension)
	Frequently Asked Questions
	What about Drag and Drop Events
	There is no „UI Toolkit“ category in the Fuzzy Finder
	I need to access properties that are not covered by the extensions.
	How to use the „Cleared“ cache trigger output?

