
UGUI 3D Object Image - Manual

Table of contents
Requirements & Setup...2

Requirements..2
How to create a World Object Image in the UI..3

World Image Hierarchy..3
World Image Attributes...5

Material..6
Color, Raycast Target, Raycast Padding, Maskable, OnCullState...6
World Objects...6
Resolution Width / Height...6
Camera Look At Position / Camera Offset..6
Camera Roll...7
Camera Follow Transform..7
Camera use Bounds To Clip..7
Camera Follow Bounds Center..8
Camera Auto Update Bounds..8
Use Render Texture (experimental)...8
Camera Near / Far Clip Plane...9
Camera Field of View..9
Camera Clear Type..9

Camera Depth.. 10
Camera Culling Mask..10
Camera Override..10
Render Texture Override..10

Prefabs (Prefab Instantiator)...11
Prefabs > Prefab...12
Prefabs > Position / Scale / Rotation..12
Prefabs > Parent...12
Prefab Source Asset...12
Prefab Parent Override...12
Mark As Do Not Save... 12
Instantiate On Enable..13
Activate On Enable..13
On Enable Indices..13
Deactivate On Disable..13
Destroy On Destroy...13
Add To World Object List...13

Transparency... 14
Alpha write (particles are invisible)..14
Clear Color + Premultiplied Alpha..15
Transparency via SCREEN SPACE CAMERA stacking (Built-In)..17
Transparency via SCREEN SPACE CAMERA stacking (URP / HDRP)..18

Frequently Asked Questions...20
What about Transparency?...20
Particles are not shown in the Built-In renderer?..20
Does this support Post-Processing Effects?..20

Requirements & Setup

Requirements
Unity 2021.3 or higher is required since that is the min version Unity allows for new assets in the
store. However it may work just fine in older versions of Unity with minor changes.

How to create a World Object Image in the UI
You can add an image via Right-Click > UI > World Image (uGUI):

Once you have done that then you can drag in your object(s) into the „WorldObject“ list, tweak
the options and you are done.

HINT: If you do not add any world object then the image will simply act as a camera into your
3D world. Use „CameraLookAtOffset“ to position the camera in the world.

World Image Hierarchy
For each image in the canvas there will be a non-persistent temporary camera created in the
scene to render your 3D world object.

The camera is used to render in to a render texture which is then
used as the source for the UI image.

World Image Attributes

Material
This is the material that is used for the UI image. This works just like in the normal Image
component.

NOTICE: Since the image is filled with a texture please make sure the material shader does
actually support a texture (most shaders do).

Color, Raycast Target, Raycast Padding, Maskable, OnCullState
These are all inherited from the default „MaskableGraphic“ component. They do work just like
the default component.

World Objects
This is the list of objects that will be used to position the camera that renders the image. Usually
the camera will center of the FIRST object of the list (the objects transform.position). However
you can also make it center on the bounding box of all objects (more on that below).

If you leave it empty then the camera will be placed at the world position set in „Camera Look
At Position“ (more on that below).

Resolution Width / Height
Since the texture for the image is taken from a RenderTexture we have to define the resolution
of the texture. You can choose from a variety of resolutions.

NOTICE: You may winder why you can not enter the resolution freely. The reason is that the
render textures are actually pooled (see RenderTexturePool in code). In order for the pool to
work we have to group the textures by certain criteria. One of these is the resolution. That’s why
one a few select resolutions are allowed. These are all divisible by 2 which is beneficial for some
graphics calculations.

Camera Look At Position / Camera Offset
The image of an object is rendered by a non-persistent camera (notice the grey UI camera).

There are two parameters that define where the camera is positioned and where it is looking at.

The „Camera Look At Position“ defines the position of the camera. The offset is then added to
the position and with it the look direction is defined.

https://docs.unity3d.com/Packages/com.unity.ugui@2.0/api/UnityEngine.UI.MaskableGraphic.html

Camera Roll
The camera roll is an angle that is applie clock-wise to the look direction.

Camera Follow Transform
If enabled then the offsets (CameraLookAtOffset and CameraOffset) are calculated within the
local space of the first WorldObject transform. This means the camera will follow the rotation,
scale and position of the transform.

Camera use Bounds To Clip
If enabled then the near an far clipping plane of the rendering camera will be automatically
reduced to the size of the 'WorldObjects' combined bounding boxes.

ON: OFF (near: 0.3 → far: 1000)

Using this option is a nice way to exclude the surroundings of an object without using layers (see
„Camera Culling Mask“).

Camera Follow Bounds Center
If enabled then the offsets (CameraLookAtOffset and CameraOffset) are calculated based on the
bounding box center.

If disabled then the offsets are based on the position of the very first entry in the 'WorldObjects'
list.

HINT: Turn this off if any of your objects are animating or else the camera might be jumpy since
the bounds will change with the animation.

Camera Auto Update Bounds
If enabled then the bounds to center on will be updated every frame.

Keep disabled if possible and instead call 'UpdateCameraClippingFromBounds()' manually.

Use Render Texture (experimental)
If disabled then the UI image will not render anything and instead camera stacking will be used.

Render Textures usually use pre-multiplied alpha which leads to many problems. The advantage
of disabling this is that it gives better results for transparent materials. However, this comes with
some major caveats:

This option only works for SCREEN SPACE CAMERA canvases!

Transparent backgrounds are NOT supported in URP and HDRP if camera stacking is used.

Camera Near / Far Clip Plane
Sets the near and far clipping plane of the camera.

NOTICE: If „Camera Use Bounds To Clip“ is enabled then these are ignored because then the
clipping planes are calculated based on the bounding boxes of the world objects.

Camera Field of View
Set the field of view of the camera.

Camera Clear Type
This is very similar to the usual camera clear types. You can choose to either use a color (with
transparency) or the skybox.

Camera Depth
The camera depths is only used if camera stacking is enabled (i.e. if „UseRenderTexture“ is
disabled). It sets the camera depth (called „priority“ in HDRP).

Camera Culling Mask
Defines what layers the object camera will render. You can use this in addition to
„CameraUseBoundsToClip“ to fine tune what is rendered.

Camera Override
If set then this camera will be used to render into the render texture. Useful for debugging or if
you want to use a custom camera.

Render Texture Override
If set then this render texture will be used as the render tearget of the object camera. Useful for
debugging or if you want to use a custom render texture.

Prefabs (Prefab Instantiator)
If you scroll down on the World Image you will find this button:

That button will add a „PrefabInstantiator “ component to your world image.

HINT: You can find an example of PrefabInstantiator in the „WorldImagePrefabInventoryDemo“
scene. The sword and the staff are prefabs that are instantiated on-demand.

The instantiator component contains a list of prefabs. In there you can specify what prefabs to
instantiate, when to instantiate and where to instantiate them.

It also has some editor buttons so you can preview how the instances will look.

HINT: Take a look at the „WorldImagePrefabInventoryDemo“ scene. In there the instantiator is
used to display the sword and magic staff.

Prefabs > Prefab
This is where you drag in your prefab object from the Assets.

Prefabs > Position / Rotation / Scale
Here you can specify the transform properties of the prefab instance.

Prefabs > Parent
You can specify a parent object for the prefab instance. If you leave it empty then the prefab will
be instantiated in the root level of the current active scene.

HINT: Setting the parent for each prefab is tiresome. If you want the same parent for all prefab
use the „Prefab Parent Override“ (see below)

Prefab Source Asset
Sometimes you want to configure your prefabs dynamically. In a real game the items shown in
the inventory will likely come from the code or another Scriptable Object, not the instantiator
list. If you set a source here then this source will take precendence over the normal Prefabs list.

HINT: You can also set an override via code (check out the public methods of the
PrefabInstantiator).

Prefab Parent Override
If set then this will be used as the parent for each prefab instance. Very handy for dynamic
prefabs sources or long lists of prefabs.

Mark As Do Not Save
By default the HideFlags of the prefab instances are set to:

HideFlags.DontSaveInBuild | HideFlags.DontSaveInEditor | HideFlags.NotEditable

This is done because the instantiator controls the lifecycle of these instances. It can create,
update and destroy them.

If you wish to treat the instances like normal game objects then you can disable this flag.

https://docs.unity3d.com/ScriptReference/HideFlags.html

Instantiate On Enable
Should the prefabs be instantiated in OnEnable? Disable this if your prefab is costly to intantiate
and you want to control is manually via CreateOrUpdateInstances().

HINT: You can limit the prefabs that should be instantiated with the „OnEnableIndices“ list (see
below).

Activate On Enable
If the image is enabled then the prefab instances will be enabled too. This is handy because
InstantiateOnEnable will only activate the instances once (on instantiation). Use this if you want
to keep your instances around and only enable/disable them.

HINT: You can limit the prefabs that should be activated with the „OnEnableIndices“ list (see
below).

On Enable Indices
A list of indices of the prefabs that should be instantiated and/or enabled in OnEnable().
NOTICE: this list is used for both „InstantiateOnEnable“ and „ActivateOnEnable“.

HINT: If you want to control this yourself then please disable the *OnEnable options and use the
public methods of the Instantiator to do this manually.

Deactivate On Disable
If enabled then all instances will be deactivated if the WorldImage is disabled.

Destroy On Destroy
If enabled then all instances will be destroyed if the WorldImage is destroyed.

Add To World Object List
If enabled then each instance is added to the WorldImages WorldObjects list. Usually this can be
left on. If you disable it then the instances will not contribute to the bounding box calculations of
the world image.

Transparency
By default this asset uses render rextures to create the image of an object. Sadly there are two
problems when it comes to rendering into render textures.

Alpha write (particles are invisible)
The first problem is alpha write. Most of Unity’s default shaders do either overwrite (replace) all
alpha information (Unlit/Transparent) OR they do not write any alpha information at all (particle
shaders).

This leads to the effect that transparent objects are either invisible (particles) or rendered as pre-
multiplied alpha causing opaque objects behind transparent ones to have an alpha value of
„one minus alpha„ if rendered into a render texture.

You can check if you material writes into alpha in the Render Texture Preview. If the right area is
black then no alpha value was written an those pixels will remain fully transparent.

Notice the missing particle alpha in the right image.

One possible workaround is to use a shader that writes some alpha values (like „Default/Sprite“)

However, this does not solve problem number two (premultiplied alpha).

Clear Color + Premultiplied Alpha
The second problem is the fact that in a render texture the background does not come from the
frame buffer. That’s why you have to define how the initial color is set (clear type + background
color).

The rendered color values in render textures are pre-multiplied with alpha by default. This
means that the shader displaying them will needs to take this into account.

Notice how dull the spherical glow looks in the UI. That’s because the transparent pixels are
already multiplied with the background color of the render texture. The background color is
grey (127,127,127) by default.

 →

Unitys Built-In renderpipeline has such a shader that can be used with an all black background
color: „Legacy Shaders/Particles/Alpha Blended“. It is not selectable from the default shader
dropdown but it is used in the „Default Particle“ Material. You can also use the included
„UIPremultipliedAlphaForBuiltIn“ material I created for easier use.

NOTICE: The „Legacy Shaders/Particles/Alpha Blended“ shader may or may not work on your
hardware (it’s called legacy for a reason). Use at your own risk.

If you want a proper solution then you will have to write your own UI shader that takes pre-
multiplied alpha from render textures into account.

Don’t forget to set the background color to black and full transparent if you use this:

While the result is not perfect it is much better than the default blending for some transparent
materials. Extra caveats exists though:

a) Sadly the „Legacy Shaders/Particles/Alpha Blended“ does not support the _Stencil property
and thus masking will not work if you use this shader.

b) Since the default UNLIT particle shaders do not write any alpha values you can try using the
LIT shader (particles/Standard Surface).

Notice how the transparent halo is much more noticable using this shader. Sadly the overwritten
alpha values still interfer but at least this is much better than the default result.

 →

Transparency via SCREEN SPACE CAMERA stacking (Built-In)
If you are not satisfied with how transparency renders and you do not want to make your own
shaders to add proper transparency support then you can use a workaround.

How to camera stacking for transparency?

All you have to do it uncheck the „Use Render Texture“ checkbox on the UI image.

NOTICE: While this will give you perfect transparency it also comes with some limitations:

• The biggest one is that this workaround only works with SCREEN SPACE CAMERA
canvases.

• Another one is that your image will always be rendered on top of everything else
and you can not rotate nor scale (squeeze or strecht) your image.

◦ HINT: You can change the order of images via the „CameraDepth“ option.

• No masking or any other interaction with the UI layout.

• It always renders the object in the current screen resolution.

• This only works in the Built-In renderer since URP and HDRP do not support
positioning or resizing stacked cameras (source).

The reason for these limits is that this uses camera stacking. By stacking cameras we can use the
default render process and do not need to worry about render textures.

Premultiplied alpha is no problem here since we simply render on top of the already existing
frame buffer.

Here is a compariosn of the three supported transparency workflows:

Default transparency Alpha Blend Material* Camera stacking (Built-In)

* Alpha Blend material uses a legacy shader and may not work every time.

https://forum.unity.com/threads/why-cant-overlay-cameras-use-viewport-rect.924932/#post-6770119

Transparency via SCREEN SPACE CAMERA stacking (URP / HDRP)
Sadly we can not (yet) position or resize stacked cameras in URP or HDRP (source). Therefore
this workflow is not supported in URP and HDRP. Once Unity adds this feature it will be
available.

Interestingly we can use the old camera stack (as known from the Built-In renderer) in URP and
HDRP.

The big downside of this is that in the RPs „CameraClearFlags.Depth“ is not supported and thus
we can not have a transparent background.

However, if your UI has some area with a uniform color then you can use it and simply set the
background color according to your UI.

Stacking with the default bg color: → Stacking with a back color that matches the UI:

Not a great solution but it’s better that nothing.

Another possible workaround is to add the image camera as a overlay camera to your UI
camera. That way the image of object will be rendered on top.

However, you will not be able to position or resize it so it will always cover the whole screen.
While can mask out parts with a stencil and a custom shader it is to complicated of a workflow
and thus it was not added to this asset (more infos on this can be found here).

https://forum.unity.com/threads/why-cant-overlay-cameras-use-viewport-rect.924932/
https://forum.unity.com/threads/why-cant-overlay-cameras-use-viewport-rect.924932/#post-6770119

Please also be aware that if an image uses camera stacking then it will NOT be visible in the UI
(scene view) but only in the game view.

Frequently Asked Questions

What about Transparency?
There are some caveats with transparency. Please check the „Transparency“ section above for
more details.

Particles are not shown in the Built-In renderer?
Since the default UNLIT particle shaders do not write any alpha values you can try using the LIT
shader (Particles/Standard Surface) instead for your particle material. This will make them show
up, though the particles will be lit.

Another alternative would be the Sprites/Default shader. That one is unlit and that’s the one
used in the demo for the particles (see UIAlphaParticlesForBuiltIn material)

Does this support Post-Processing Effects?
As with transparency post-processing is tricky if used on a camera that renders into a render
texture (primarily for those effects that do require transparency). Some may work, others might
not. However, you can always use the camera stacking workflow to overcome this problem (see
„Improved transparency support“ above).

	Requirements & Setup
	Requirements

	How to create a World Object Image in the UI
	World Image Hierarchy

	World Image Attributes
	Material
	Color, Raycast Target, Raycast Padding, Maskable, OnCullState
	World Objects
	Resolution Width / Height
	Camera Look At Position / Camera Offset
	Camera Roll
	Camera Follow Transform
	Camera use Bounds To Clip
	Camera Follow Bounds Center
	Camera Auto Update Bounds
	Use Render Texture (experimental)
	Camera Near / Far Clip Plane
	Camera Field of View
	Camera Clear Type
	Camera Depth
	Camera Culling Mask
	Camera Override
	Render Texture Override

	Prefabs (Prefab Instantiator)
	Prefabs > Prefab
	Prefabs > Position / Rotation / Scale
	Prefabs > Parent
	Prefab Source Asset
	Prefab Parent Override
	Mark As Do Not Save
	Instantiate On Enable
	Activate On Enable
	On Enable Indices
	Deactivate On Disable
	Destroy On Destroy
	Add To World Object List

	Transparency
	Alpha write (particles are invisible)
	Clear Color + Premultiplied Alpha
	Transparency via SCREEN SPACE CAMERA stacking (Built-In)
	Transparency via SCREEN SPACE CAMERA stacking (URP / HDRP)

	Frequently Asked Questions
	What about Transparency?
	Particles are not shown in the Built-In renderer?
	Does this support Post-Processing Effects?

